English
极速体育吧
当前位置: 首页 > 极速体育吧足球直播

无刷电机工作及控制原理图文解析

来源:极速体育吧足球直播    发布时间:2024-02-25 16:50:50    浏览数:181 次

  首先给大家复习几个基础定则:左手定则、右手定则、右手螺旋定则。别懵逼,我下面会给大家解释。 左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。

  让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。 右手定则,这是产生感生电动势的基础,跟左手定则的相反,磁场中的导体因受到力的牵引切割磁感线产生电动势。

  让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。为何需要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,由此产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。不信可以试试。

  ▲三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。

  这个定则是通电线圈判断极性的基础,红色箭头方向即为电流方向。 看完了三大定则,我们接下来先看看电机转动的基本原理。

  我们找到一个中学物理学过的直流电机的模型,通过磁回路分析法来进行一个简单的分析。

  当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩是力与力臂的乘积。其中一个为零,乘积就为零了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,

  如此不断改变两头螺线管的电流方向,内转子就会不停转起来了。改变电流方向的这一动作,就叫做换相。补充一句:何时换相只与转子的位置有关,而与其他任何量无直接关系。

  一般来说,定子的三相绕组有星形联结方式和三角联结方式,而“三相星形联结的二二导通方式”最为常用,这里就用该模型来做个简单分析。

  上图显示了定子绕组的联结方式(转子未画出假想是个二极磁铁),三个绕组通过中心的连接点以“Y”型的方式被联结在一起。整个电机就引出三根线A, B, C。当它们之间两两通电时,有6种情况,分别是AB,AC, BC, BA, CA, CB注意这是有顺序的。

  当AB相通电,则A极线圈产生的磁感线方向如红色箭头所示,B极产生的磁感线方向如图蓝色箭头所示,那么产生的合力方向即为绿色箭头所示,那么假设其中有一个二极磁铁,则根据“中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致”则N极方向会与绿色箭头所示方向重合。至于C,暂时没他什么事。 ▼第二阶段:AC相通电

  为了节省篇幅,我们就不一一描述CACB的模型,你们可以自己类推一下。以下为中间磁铁(转子)的状态图:

  我们再来看一个复杂点的,图(a)是一个三相九绕组六极(三对极)内转子电机,它的绕组连线方式见图 (b)。从图(b)可见,其三相绕组也是在中间点连接在一起的,也属于星形联结方式。一般而言,电机的绕组数量都和永磁极的数量是不一致的(比如用9绕组6极,而不是6绕组6极),这样是为了防止定子的齿与转子的磁钢相吸对齐。

  其运动的原则是:转子的N极与通电绕组的S极有对齐的运动趋势,而转子的S极与通电绕组的N极有对齐的运动趋势。 即为S与N相互吸引,注意跟之前的分析方法有一定的区别。 好吧,还是再帮大家分析一下吧,

  看完了内转子无刷直流电机的结构,我们来看外转子的。其区别就在于,外转子电机将原来处于中心位置的磁钢做成一片片,贴到了外壳上,电机运行时,是整个外壳在转,而中间的线圈定子不动。外转子无刷直流电机较内转子来说,转子的转动惯量要大很多(因为转子的主要质量都集中在外壳上),所以转速较内转子电机要慢,通常KV值在几百到几千之间。也是航模主要运用的无刷电机顺便啰嗦一下吧。无刷电机KV值定义为:转速/V,意思为输入电压每增加1伏特,无刷电机空转转速增加的转速值。比如说,标称值为1000KV的外转子无刷电机,在11伏的电压条件下,最大空载转速即为:11000rpm(rpm的含义是:转/分钟)。 同系列同外形尺寸的无刷电机,根据绕线匝数的多少,会表现出不同的KV特性。绕线匝数多的,KV值低,最高输出电流小,扭力大;绕线匝数少的,KV值高,最高输出电流大,扭力小。我先前测试过穿越机2204电机的极限电流,单电机能彪上25A,而2212系列电机15A都上不了。

  分析方法也和内转子电机类似,大家能自己分析一下,根据右手螺旋定理判断线圈的N/S极,转子永磁体的N极与定子绕组的S极有对齐(吸引)的趋势,转子永磁体的S极与定子绕组的N极有对齐(吸引)的趋势,从而驱动电机转动。 经典无刷电机2212 1000kv电机结构分析。

  其结构如下:定子绕组固定在底座上,转轴和外壳固定在一起形成转子,插入定子中间的轴承。

  后面画出了6种两相通电的情形,能够准确的看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB->

  后面画出了6种两相通电的情形,能够准确的看出,尽管绕组和磁极的数量可以有许多种变化,但从电调控制的角度看,其通电次序其实是相同的,也就是说,不管外转子还是内转子电机,都遵循AB-CB的顺序进行通电换相。当然,如果你想让电机反转的话,电子方法是按倒过来的次序通电;物理方法直接对调任意两根线,假设A和B对调,那么顺序就是BA->

  CB的顺序进行通电换相。当然,如果你想让电机反转的话,电子方法是按倒过来的次序通电;物理方法直接对调任意两根线,假设A和B对调,那么顺序就是BA-

  ▲CB相通电 要说明一下的是,由于每根引出线同时接入两个绕组,所以电流是分两路走的。这里为使问题尽量简单化,下面几个图中只画出了主要一路的电流方向,还有一路电流未画出,另一路电流的详细情况放在后面做多元化的分析,涉及到电路检测换相位置。

  关键字:引用地址:无刷电机工作及控制原理图文解析上一篇:PLC的6种实用技巧

  东芝新款车载直流无刷电机栅极驱动IC有助于提升车辆电气元件的安全性 中国上海,2023年2月28日—— 东芝电子元件及存储装置株式会社(“东芝”)今日宣布推出车载直流无刷电机栅极驱动IC ---“TB9083FTG”,该IC适用于电动转向助力系统(EPS)、电动制动系统和线控换档系统等应用。产品于今日开始批量出货。 车载设备一定要能提供符合ISO 26262道路车辆功能安全规定要求的相关性能。车载设备中采用的半导体芯片和电子元件也不例外。TB9083FTG这款新产品能够控制和驱动用于驱动3相直流无刷电机的外置N沟道功率MOSFET。它很适合用于满足ISO 26262功能安全性标准第二版 的要求,并支持ASIL-D

  栅极驱动IC有助于提升车辆电气元件的安全性 /

  日前,在慕尼黑(德国)电子展览会上,elmos提供了汽车应用的电机驱动芯片,能够正常的使用24V和48V车载电源和24V至60V供电电源,适用于工业应用环境电机驱动,和汽车散热器格栅调节。elmos的电机驱动芯片还能控制车载水泵和LED前大灯的冷却。所有IC具有全面的安全功能和一流的精度。 elmos还推出了72V 3相半桥驱动器IC(E523.50),用于直流无刷(BLDC)电机的驱动。能应用于24V和48V车载电源的汽车应用和24V至60V供电电源的工业应用。驱动器芯片符合AEC Q100标准0级(150°C)。芯片配有1个高压输入口,1个数字RUN引脚和6个数字输入控制引脚的3个半桥驱动器(3个高边和3个低边门极驱动)。该I

  和步进电机驱动器 /

  直流无刷电机的正弦波控制即通过对电机绕组施加一定的电压,使电机绕组中产生正弦电流,经过控制正弦电流的幅值及相位达到控制电机转矩的目的。与传统的方波控制相比,电机相电流为正弦,且连续变化,无换相电流突变,因此电机运行噪声低。 根据控制的复杂程度,直流无刷电机的正弦波控制可分为:简易正弦波控制与复杂正弦波控制。 01 简易正弦波控制 对电机绕组施加一定的电压,使电机相电压为正弦波,由于电机绕组为感性负载,因此电机相电流也为正弦波。经过控制电机相电压的幅值以及相位来控制电流的相位以及幅值,为电压环控制,实现较为简单。 02 复杂正弦波控制 与简易正弦波控制不同,复杂的正弦控制目标为电机相电流,建立电流环,通过直接控制相电流的

  的正弦波控制介绍 /

  驱动系统与无刷电机的特性有着密切的关系,人们已经采用很多方法来改善电机的可控性和特性。在本文中,我们将解释两种典型的驱动系统:方波驱动和正弦波驱动。 电机驱动系统 3.1.1 方波驱动系统(120°导通方式) 无刷电机驱动系统有很多种,120°导通方式的方波驱动就是一个常见的例子。如图 3.1 所示,该方法涉及根据霍尔效应 IC 输出信号的组合来切换激励状态。虽然在低速运行期间会出现速度纹波,但能够最终靠简单的电路实现高输出功率。因此,它被大范围的使用在控制办公自动化设备和功率设备的无刷电机。 3.1.2 正弦波驱动系统 如图 3.2 所示,正弦波驱动系统是对施加电压进行精细控制,使电机电流呈正弦波的驱动系统。该驱动系统具有少量扭

  驱动系统详解 /

  摘要:方波型直流无刷电机具有控制简单、效率高等优点,因此在很多领域得到了广泛的应用。实现对方波型直流无刷电机的操控方法有很多,主要介绍了一种H-PWMLON调制方式,该方式有利于电机的能量反馈和制动。并粗略地介绍了利用80C196MH编程实现H_PWM_L_ON调制。 关键字:直流无刷电机;PWM控制;调制 0 引言 近几年来,随着电力电子技术的快速的提升,永磁无刷直流电机的本体及其相关控制技术获得迅猛的发展。永磁无刷直流电机有着噪音低、效率高、控制简单、功率密度高等诸多优点,因此在交通、航空、航天、军工、伺服控制以及家电领域得到普遍应用。 对方波型无刷直流电机的控制方式主要有H_PWM_L_0N调制方式、H_ON_L_PWM

  意法半导体推出一款75V以下低压工业应用高集成度三相半桥驱动器IC,这是一个节约空间、节能高效的电机控制解决方案,适用于控制电瓶车、电动工具、泵、风扇、轻型机械、游戏机和别的设备内的三相无刷电机。 STDRIVE101内置三个用于驱动外部N沟道MOSFET的半桥驱动器,每个驱动器的最大拉电流和灌电流都是600mA。芯片内部集成自举二极管和50mA 12V低压降(LDO)稳压器,可随时为外部组件供电,最大限度地减少物料清单成本。集成的比较器配合外部电阻可以检测电流,MOSFET漏源电压监视功能能实现短路保护。 内部基本安全功能包括内部产生的防止交叉导通的死区时间、过热关机功能,和防止MOSFET在低效率或危险条

  东芝公司(Toshiba Corporation)推出一般汽车应用专用三相无刷电机预驱动器集成电路“TB9080FG”,可通过正弦波驱动和提前角控制1让电机实现低噪高效运转。该产品计划于今年9月投入量产。 对于配有怠速减速系统的车辆,当系统被启动时,车辆的发动机噪音就会消失,而汽车空调的噪音则更容易听见。尽管市场上亟需一种可降低空调噪音的方法,但是机械解决方案,如优化主要噪音来源——鼓风机风扇的叶片形状和空气管道中的降噪材料,都未能实现低噪音目标。 “TB9080FG”使用正弦波控制替代了120度矩形波控制,可通过电子方式降低鼓风机风扇电机的噪音。经过优化的提前角控制还有助于提高电机运转效率。 产品主要特性 1. 正弦

  1 引言 电瓶车以蓄电池发出的电能作为驱动能源,以电动机作动力,具有无废气污染、“零排放”、无噪音、轻便美观等特点。但目前市场上的电瓶车还存在着一些不够完善的地方,尤其是方面有待于进一步提升。本文根据无刷直流电机的原理,利用美国Atmel公司2002年推出的一款新型AVR高档单片机电机调速控制管理系统,该系统具有硬件结构相对比较简单、软件设计灵活、适用面广、价格低等优点?具有一定的实用价值。 2 ATmega8芯片简介 ATmega系列单片机承袭了AVR系列中AT90所具有的特点? 并增加了更多的接口功能? 而且在省电性、稳定性、抗干扰性及灵活性方面都更加周全和完善。ATmega8属于ATmega系列单片机(

  控制系统 /

  FOC硬核和软核控制特点及吊扇典型应用方案介绍

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  电源小课堂 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势

  3D打印机选什么料号?YXC扬兴科技 石英振荡器YSO110TR稳定时钟之选

  随着3D打印技术的加快速度进行发展,3D打印机在制造、设计和创新领域中发挥着逐渐重要的作用。在这一领域中,时间和精度至关重要。石英振荡器YSO1 ...

  录像机能够记录视频图像及背景音,将其储存到音箱介质中,然后可以把这些音像重新发送到播放系统中得以重现的记录装置。图像传感器作为录像 ...

  基于NOVATEK NT98336 结合搭载 Hailo-8 的后端智能影像分析解决方案

  在智能影像视频分析的广泛应用下,多重识别是现今影像监控系统中的一个重要应用,在此过程中会使用多个影像视频流来做分析识别,这有助于数 ...

  eCall系统简介eCall(emergency Call,eCall,也常常叫作“紧急救援”)系统是欧洲推动的一项技术开发计划,旨在为发生碰撞的驾车者提供快 ...

  在智能家居设备越来越普及的今天,扫地机器人和洗地机行业也慢慢变得内卷,都在追求技术创新,而我接下来介绍的这一款产品,在扩展扫地机和洗 ...

  嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: