无刷直流马达控制电路
来源:行星减速电机 发布时间:2024-04-23 05:34:13无刷直流电机(BLDC)是一种高效、高可靠性、低噪声和低维护成本的电机,由于其优异的性能,在许多
热线电话: 0574-62199590
产品视频
产品明细
无刷直流电机(BLDC)是一种高效、高可靠性、低噪声和低维护成本的电机,由于其优异的性能,在许多应用中得到了广泛的应用,例如家用电器、工业自动化、电动车等。控制BLDC电机需要一个专门的控制电路,以下是常用的几种BLDC电机控制电路:
三相桥式电机驱动器:这是一种常用的BLDC电机控制电路,它使用三相桥式电路来控制BLDC电机的相位和电流。三相桥式电路由六个功率晶体管组成,经过控制不同的晶体管通断,可以使电机转动并控制其速度和方向。
三相反电动势(EMF)控制器:这种控制电路使用电机本身的三相EMF来控制电机转速和方向。它包括一个由三个电容器和三个绕组组成的桥式电路,通过改变电容器的充放电状态来控制电机的相位和电流。
磁传感器控制器:这种控制电路使用磁传感器来检测电机的位置,并根据检测结果控制电机的相位和电流。磁传感器一般会用霍尔效应传感器或磁性编码器,可以准确地检测电机的转子位置和速度,并实现高精度的控制。
无传感器控制器:这种控制电路不需要磁传感器来检测电机的位置,而是经过测量电机的EMF信号来确定转子位置和速度,并控制电机的相位和电流。无传感器控制器具有简单、高效、低成本等优点,已经大范围的应用于许多领域。
电子换向控制器:这种控制器使用半导体器件来控制电机的相位和电流,电机的换向过程经过控制不同的半导体开关来实现。电子换向控制器通常具有高速、高效、低噪声等特点,适用于高速、高精度控制的应用。
磁致伸缩换向控制器:这种控制器利用磁致伸缩效应来实现电机的换向,通过改变磁场的方向来控制电机的相位和电流。磁致伸缩换向控制器具有高速、高效、低成本等优点,适用于一些特殊应用场合。
无论采用何种控制电路,控制BLDC电机都需要一定的控制算法和软件支持。常用的控制算法包括三角函数PWM(Pulse Width Modulation)控制、反馈控制、PID(Proportional Integral Derivative)控制等。此外,还需要一些硬件设备支持,例如控制器芯片、功率晶体管、磁传感器、编码器等。
总之,无刷直流电机控制电路能根据不同的控制需求和技术要求选择不同的控制器和算法,以实现高效、精确、可靠的电机控制。
以上是一些常用的BLDC电机控制电路,不同的电路具有不同的特点和适用范围,能够准确的通过具体的应用需求和技术方面的要求来选择和使用。
无刷直流电机驱动控制电路如图1 所示。该电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,四轴飞行器中的直流无刷电机驱动电路电源电压为12 V.驱动电路中,Q1~Q3采用IR公司的IRFR5305(P沟道),Q4~Q6为IRFR1205(N 沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿,其典型特性参数见表1.T1~T3 采用PDTC143ET 为场效应管提供驱动信号。
无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,若某一时刻AB 相导通时,C 相截至,无电流输出。单片机根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5 打开时,AB 相导通,此时电流流向为电源正极→Q1→绕组A→绕组B→Q5→电源负极。类似的,当MOSFET 打开顺序分别为Q1Q5,Q1Q6,Q2Q6,Q2Q4,Q3Q4,Q3Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。
下图为无刷电机的三相全桥驱动电路,使用六个N沟道的MOSFET管(Q1~Q6)做功率输出元件,工作时输出电流可达数十安。为便于描述,该电路有以下默认约定:Q1/Q2/Q3称做驱动桥的“上臂”,Q4/Q5/Q6称做“下臂”。
图中R1/R2/R3为Q1/Q2/Q3的上拉电阻,连接到二极管和电容组成的倍压整流电路(原理请自行分析),为上臂驱动管提供两倍于电源电压(2×11V)的上拉电平,使上臂MOSFET在工作时有足够高的VGS压差,降低MOSFET大电流输出时的导通内阻,详细数据可参考MOS管DataSheet。
上臂MOS管的G极分别由Q7/Q8/Q9驱动,在工作时只起到导通换相的作用。下臂MOS由MCU的PWM输出口直接驱动,注意所选用的MCU管脚要有推挽输出特性。
图1示出采用8751单片机来控制直流无刷电动机的原理框图。8751的P1口同7406反相器联结控制直流无刷电动机的换相,P2口用于测量来自于位置传感器的信号H1、H2、H3,P0口外接一个数模转换器。
1 引言 本文介绍的音量控制IC为M62429,市面上有很多类似的产品,例如:FM62429、CD62429、CSC62429等。其实,掌握了一两种IC的编程方法,稍作改动就很容易移植到其它产品上。M62429是日本三菱公司的音量控制IC,音量调节范围是0~-83dB,控制精度每步1dB,内部电路如图一(详见M62429的使用手册)。 图一 M62429内部电路 2 硬件电路 根据图一而设计的电路如图二。 图二中已省略了单片机与功放连接的其他电路,只剩下AT89C52的晶振部分、与M62429相关的电路、控制音量必需的按键电路等,加上电源之后,该电路可以独立工作。由于AT89C52真正的串口已用于
Abstract 在DE2上用FSM实现汽车尾灯控制 电路 。 Introduc ti on 使用环境: Quartus II 9.1 web edi TI on + DE2 假设汽车尾部左右两侧各有3个 指示灯 ,要求设计一个电路实现如下功能: 1. 汽车正常行驶时,尾部两侧的6个灯全灭; 2. 刹车时,尾部两侧的灯全亮,即紧急状态; 3. 右转弯时,右侧3个灯按向右的顺序循环点亮,每次只有一个灯亮,左侧灯全灭; 4. 左转弯时,左侧3个灯按向左的顺序循环点亮,每次只有一个灯亮,右侧灯全灭; 5. 右转弯刹车时,右侧的3个灯顺序循环点亮,左侧的灯全亮;左转弯刹车时,左侧的3个灯顺序循环点亮,右
设计 /
电路图识读能力是电气专业必备技能之一,控制电路图,是继电控制回路在安装、调试、维修、维护等过程中,需熟练掌握的基础知识。 电路图就像我们熟悉的地图一样,通过电路图,我们可以了解控制电路的工作原理、接线顺序、控制逻辑等内容。为我们对控制电路熟悉,提供了重要指引信息。 本文从识图必备基础,对电路图符号与控制状态、七种常见继电控制方式、继电控制识图技巧三个维度进行详细解析。希望为你了解继电控制,掌握识图能力与方法提供参考及帮助。 一、解析控制电路图符号与控制状态 1、控制电路符号解读 学习电路图识图方法,首先我们需对电路图内的符号含义有充分的了解。下面我们将对常见继电控制回路图符号进行一一解读。 从控制驱动方式划分,可分为一
图工作方式和识图技巧 /
主要介绍基于现场可编程门阵列(Field Programmable Gate Array,FP-GA)及EDA方法学的永磁无刷直流电机控制系统的电子电路设计。FPGA是一种高密度可编程逻辑器件,其逻辑功能的实现是通过把设计生成的数据文件配置进芯片内部的静态配置数据存储器(SRAM)来完成的,具有可重复编程性,可以灵活实现各种逻辑功能。 与ASIC不同的是,PCA本身只是标准的单元阵列,没有一般IC所具有的功能,但用户能够准确的通过需要,通过专门的布局布线工具对其内部进行重新编程,在最短的时间内设计出自己专用的集成电路,从而大大提高了产品的竞争力。由于它以纯硬件的方式来进行并行处理,而且不占用CPU资源,所以能使系统达到很高的性能。这种新的
你被家里的许多电器所引起的噪音分心了吗?TI最新推出的无刷直流电机驱动器,采用梯形和磁场定向控制,可使电器噪音减少3.3 dBA。 无刷直流电机(BLDC)取代交流感应电机,在通用电器中的应用越来越普遍,包括风扇、空气净化器、洗衣机和烘干机泵以及医用CPAP鼓风机。 然而,无刷直流电机的调制也会产生噪声,尤其是开放式概念越来越在办公的地方和家庭环境中流行。 未解决这些噪声有关问题,德州仪器(TI)日前宣布推出两款新的70 W无传感器无刷直流电机驱动器,MCT8316A和MCF8316A。这些驱动器具有高度集成和无代码等特点,分别使用先进的梯形控制和磁场定向控制(FOC)。 电器常见噪声级的几个示例。 这些新芯片
电机驱动系列 /
无线充电检测与控制电路 电路图,仿真图,测试图,源代码全技术资料 本项目采用 TL2543 AD采电压电流 无线充电给超级电容充电,并进行仔细的检测是否充满,源代码、及电路原理图,设计的具体方案分享给大家,希望我们大家多多指教。 程序流程图: TL2543 AD采样程序流程图 制作出来的实物图如下: 单片机参考源代码如下: /*接好线后记得共地,根据程序来决定采集通道是IN几。开始时的数据是变化的当采集一点 电压时就稳定显示采集的电压,采集电压时记得改变基准电压,每个板基准电压都不同。 AIN0~AIN10为模拟输入端; 为片选端;DIN 为串行数据输入端; DOUT为A/D转换结果的三态串行输出端;EOC为转换结束端;
(1)当不加热时,CPU 19脚输出低电平(同时13脚也停止PWM输出), D18导通,将V8拉低,另V9 V8,使IGBT激励电路停止输出,IGBT截止,则加热停止。 (2)开始加热时, CPU 19脚输出高电平,D18截止,同时13脚开始间隔输出PWM试探信号,同时CPU通过一系列分析电流检测电路和VAC检测电路反馈的电压信息、VCE检测电路反馈的电压波形变动情况,判断是否己放入适合的锅具,如果判断己放入适合的锅具,CPU13脚转为输出正常的PWM信号,电磁炉进入正常加热状态,如果电流检测电路、VAC及VCE电路反馈的信息,不合乎条件,CPU会判定为所放入的锅具不符或无锅,则继续输出PWM试探信号,同时发出指示无锅的报知信息(
随着科学技术的发展,高温、高压、高速和高负荷已成为现代工业的重要标志,但它的实现是建立在材料高质量的基础之上的,为确保这种优异的质量,一定要采用不破坏产品原来的形状、不改变其使用性能的检测的新方法,对产品做百分之百地检测,以确保其可靠性和安全性,这种技术就是无损害地进行检测技术。 超声波检验测试在不伤害原有设备的检测中占据着主要地位,大范围的应用于金属、非金属材料以及医学仪器等领域。近年来以微电子学和计算机技术为基础的信息技术快速的提升,超声不伤害原有设备的检测仪器也得到了前所未有的发展动力,为了更好的提高检测的可靠性和提高检测效率,研制数字化、智能化、自动化、图像化的超声仪是当今无损害地进行检测领域发展的一个重要趋势。而传统的超声波检测仪存在准确性差、精度低、体积大、功耗大
嵌入式工程师AI挑战营(初阶):基于RV1106,动手部署手写数字识别落地
有奖直播 瑞萨新一代视觉 AI MPU 处理器 RZ/V2H:高算力、低功耗、实时控制
在当今加快速度进行发展的技术格局中,汽车、通信和工业市场处于数字化转型的最前沿。 由AI和机器学习驱动的先进的技术开创了一个创新的新时代 ...
分享一型已量产的风扇设计的具体方案。I下面分功能模块来讲解下:电源部分该电源部分采用小家电常用的阻容降压电路,阻容降压的特点是成本低,缺 ...
什么是相位检测自动对焦(PDAF)?相位检测自动对焦,全称Phase Detection Auto Focus(简称PDAF),是相机等拍摄设备中的关键技术,主 ...
快节奏已经是每个人生活的常态,开放式的办公环境、上下班通勤路上、出差旅途中我们无时无刻不被噪音污染影响着。于是乎随着科学技术的发展 ...
使用音频音调电路有两个基本原因。第一个原因是调节信号进入音频功率放大器时的带宽。如果带宽不受限制,则可能没办法在扬声器处恢复原始信号 ...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科