直流电动机调速原理及特性
来源:极速体育吧 发布时间:2024-02-23 15:29:56直流电动机调速是指电动机在一定负载的条件下,根据自身的需求,人为地改变电动机的转速。直流电动机调
热线电话: 0574-62199590
产品视频
产品明细
直流电动机调速是指电动机在一定负载的条件下,根据自身的需求,人为地改变电动机的转速。直流电动机调速调速性能好。
所谓“调速性能”,是指电动机在一定负载的条件下,根据自身的需求,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。
要使电枢受到一个方向不变的电磁转矩,重点是:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转。
(一)调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据自身的需求,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。
(二)起动力矩大。可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。
本文介绍的小功率直流电机调速电路具有电路新颖、调试方便、调速范围宽及转差率低等特点。适合各种要求调速精度较高的生产机械设备用。电路如图1所示。
主电路直接输人220V交流,经晶闸管半控桥整流后供给电机电枢。整流后的电压较高,适合标称电压为150至180V功率小于2kw的直流电机。这里晶闸管T1和二极管v3及T2和v4采用电力半导体半臂电桥模块。
直流电机的励磁绕组L2由二极管V1、V2及借用电枢回路的V3、V4组成的整流桥供电,节省了两只二极管。为确保晶闸管关断时,电枢电流连续且平滑,在主电路中接入了续流二极管V5及平波电抗器L1。
(1)同步电压的获取及脉冲触发电路:一般单相半控桥整流电路均采用单结晶体管触发方式,同步信号采用稳压二极管稳压后的削波电压,缺点是触发脉冲的移相范围减小。本电路采取电源的过零点时刻作为同步信号,同步范围可达170°以上。由二极管V1、V2、V3、V4整流桥输出的单相脉动直流电压一路经电阻R12、R13分压,ZD2稳压获得22V的直流电压作为触发电路等的工作电源,另一路经R21、R22分压送至三极管BG6的基极。每当电源过零时BG6吼截止,而BG4、BG5饱合导通,BG4将电容c12短接以保证在任意电源半周都是从零点开始充电,B炕集电极输出的低电平信号使IC1复位,其(3)脚输出低电平以保证晶闸管的触发信号在任意电源半周期内都以电源过零点作为基准。三极管BG3的集电极电流为C12充电,当BG1管导通时C12放电使三极管BG2饱和导通,集电极输出的低电平使IC1置位,其(3)脚输出高电平,经沧电藕合器输出触发脉冲送至晶闸管的门极。这里时基电路SE555的作用是加大脉冲宽度,脉冲宽度值由R6、C7的充电时间常数决定。光电祸合器的作用是增大脉冲幅度,以确保晶闸管可靠触发导通。
(2)给定和反馈控制:为提高电机的机械特性硬度和减小转差率,该电路增加了电压负反馈和电流正反馈控制,给定电位器RP3和电压取样电位器RP1、电流取样电位器RP2共同控制三极管BG3的导通程度,从而控制BG3的集电极电流,使负载发生明显的变化时触发脉冲的相位随之变化,电机转速得以基本恒定。关键字:引用地址:直流电动机调速原理及特性
BTL(Bridge-Tied-load)意为桥接式负载。负载的两头分别接在两个放大器的输出端。其中一个放大器的输出是另外一个放大器的镜像输出,也就是说加在负载两端的信号仅在相位上相差180°。负载上将得到原来单端输出的2倍电压。从理论上来讲电路的输出功率将增加4倍。BTL电路能充分的利用系统电压,因此BTL结构常应用于低电压系统或电池供电系统中。在汽车音响中当每声道功率超过10w时,大多采用BTL形式。BTL形式不同于推挽形式,BTL的每一个放大器放大的信号都是完整的信号,只是两个放大器的输出信号反相而已。用集成功放块构成一个BTL放大器需要一个双声道或两个单声道的功放
为了分析2300系列电源/负载电路组合,整个电源建模为由一个理想误差校正放大器、一个理想放大器输出级和一个理想反馈感测放大器组成的反馈网络(见图1)。感测放大器直接测量负载电压,促使电源输出升高电压来克服测试线和夹具的损耗,以确保所需电压(或设置电压)被施加至负载。电缆和测试夹具连接/DUT建模为集总元件,其中DUT和测试夹具根据主要组件的定义建模为DUT的并联电容。 图1. 2300系列的简化测量原理图,具有电抗负载和远端感测反馈。 反馈网络的性能用波特图分析,图中显示了增益和相位性能是频率的函数。图2示出了2306电源至开路的环路增益和相位性能——实际是性能好的阻性负载。在稍大于1MHz的频率上,环路增益降至0dB(单位增
电路组合的稳定性分析 /
运算放大器通常用于在工业流程控制、科学仪器和医疗设施等各种应用中产生高性能电流源。《模拟对线期上发表的 单放大器电流源介绍了几种电流源电路,它们能提供通过浮动负载或接地负载的恒流。在压力变送器和气体探测器等工业应用中,这些电路广泛应用于提供4-mA至20-mA或0-mA至20-mA的电流。 图1所示的改进型Howland电流源非常受欢迎,因为它可以驱动接地负载。允许相对较高电流的晶体管可以用MOSFET取代,以便达到更高的电流。对于低成本、低电流应用,可以去除晶体管,如《模拟对线期 精密电流源的心脏:差动放大器所述。 这种电流源的精度取决于放大器和电阻。本文介绍如何选
电流源误差 /
在满足保护要求的前提下,升压转换阶段可以通过负载上的局部电压提供系统优势。 启动时的输出短路故障、过载、其他故障、以及高电容负载会严重损伤或降低输入电源,破坏负载。负载本身对于电压的要求也许会很严格,甚至需要高于主输入电源的更高的电压。这些条件和需求可能会导致输入的电源被过度设计或负担过重,尤其是在提升负载时。与用于高电压负载的升压转换器共同面临的问题是,它会提供机制以保护下游电路。这是由于从输入到输出的固有通路径加剧了主供应的压力,降低了系统的可靠性,特别是在故障或过载的条件下。 在某些系统中,负载需要输入电压高于主电源所能提供的电压。低压电池供电类系统就是其中之一。具有固定总线电源(此电源能够给大家提供在长电缆和通信系统上运用的
引言 各种由电池供电的电子产品,如手提电脑、手机、数码相机、PDA等的电源管理系统都需要DC/DC转换器,因此,DC/Dc转换器的应用越来越广泛。它的实现及控制方式也多种多样,但输出精度、转换效率、启动电压等是DC/DC转换器中的核心问题。本文介绍了一款结构简单、功能完备、输出精度高、功耗低的升压型PFM控制DC,DC转换器。升压型DC/DC转换器结构功能框图和工作原理从传统升压型DC/DC转换器的结构和工作原理可以看出,其核心问题是驱动电路对开关晶体管M的控制,本文提出了一种升压型PFM控制DC/DC转换器,采用内置的MOSFET作为开关管,包括基准电压源、误差比较器、运放、PFM控制电路、MOSFET限流保护电路、使能控制、
飞兆半导体推出采用3x3x0.6mm超薄MLP封装的高效率、宽电压范围集成式升压转换器
FAN5336 提供 87% 的转换效率,优化的电路板空间,适用于手机、PDA、MP3 和 许多其它便携式设计的小型 LCD 和 LED 背光照明应用 飞兆半导体公司 (Fairchild Semiconductor) 推出新型高频率集成升压转换器FAN5336,可让设计人员获得87%的系统效率、低EMI和节省电路板空间,广泛适用于小型LCD偏压和白光LED背光照明设计。这款1.5MHz开关频率的升压转换器具有宽泛的输出电压范围(9-33V),并将开关NFET集成在尺寸仅为3x3 x0.6mm的超薄模塑无引脚封装 (UMLP) 中。FAN5336的体积比常用的SOT封装器件更小,却能提供更多的功能,包括更高的峰值电流 (1.5A
对晶振的负载谐振频率进行测量有很多种方法,直接阻抗法就是其中一种,它使用网络分析仪,比物理负载电容法等其它方法更加准确、方便并且成本更低。本文介绍如何使用直接阻抗法进行测量并通过实测数据说明它好于其它测量方法的原因。 在 晶振参数测量中,由于Fs和Fr阻抗相对较低,按IEC 444和EIA 512进行Fs/Fr测量没有什么困难,问题主要在于负载谐振频率(FL)的测量,特别是负载电容(CL)很低的时候。晶振在负载谐振频率处阻抗相比来说较高,用50 网络分析仪测量较高阻抗要求测量设备具备很高稳定性和高精度,一般来说这样的要求不切实际,成本太高,因此技术人员又开发了几种负载谐振频率测量方法,如计算法、物理负载电容法等,这些方
功率密度技术提供商Silanna Semiconductor宣布推出针对USB-PD应用的最新系列宽电压、高频负载点转换器。Silanna Semiconductor始终专注于应对终极的电源管理挑战,并通过一流的功率密度和效率性能以及前所未有的物料清单(BoM)节省达到客户满意。 两个DC-DC转换器(降压稳压器)的SZPL3102A/3103A系列最高工作频率为2MHz,可实现业界领先的宽输入和宽输出范围转换器,并以小巧的3mm X 3mm QFN封装支持高达24VDC输入。 Silanna Semiconductor市场总监Tim Wilhelm解释说:“更高的开关频率意味着可使用更小体积和更低成本的输出滤波器,
点转换器,可快速提高最高效率 /
测试 DCDC 转换器
电容
使用75 W TAS6424-Q1 D类音频放大器进行直流和交流负载诊断
深入研究可穿戴设备和物联网的轻负载高效低噪声电源参考设计 (TIDA-01566)
MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~
电源小课堂 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势
解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!
2023年12月,米尔电子联合战略合作伙伴全志科技,率先业内发布了国产第一款T527核心板及开发板,这款高性能、超高的性价比、八核A55的国产核心 ...
(Novuton)宣布推出一款针对先进人机界面 (HMI) 应用的微处理器 (MPU)。MA35H0系列提高了HMI处理性能。该系列 MPU 基于 64 ...
日前,OpenTitan联盟宣布了一个重大消息:他们成功推出了首款包含开源内置硬件安全功能的商用硅芯片。这一里程碑式的成就不仅代表了开放硬 ...
内存变革将至,DRAM 后谁扛大旗?MRAM、FERAM 和 ReRAM 摩拳擦掌
2 月 22 日消息,存储网络行业协会(SNIA)多位专家近日预估,21 世纪 20 年代末将会掀起持久内存(PMEM)变革浪潮,相信新技术将取 ...
Arm 更新 Neoverse 产品路线图,实现基于 Arm 平台的人工智能基础设施
Arm 宣布推出两款基于全新第三代 Neoverse IP 构建的新的 Arm Neoverse 计算子系统...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科